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In this study, the interaction with a free surface of an initially axisymmetric jet issuing
beneath and parallel to the surface was examined. The purpose was to determine
the origin of the ‘surface current’ – the large outward velocity which exists in a thin
layer adjacent to the surface. Using the equations of mean motion, it is shown that
near the surface, outward acceleration results from the balance between a positive
contribution from the lateral Reynolds-stress gradients and a negative contribution
from the lateral pressure gradient. The local pressure field near the free surface is
shown to be largely determined by the local Reynolds-stress field. Combining these
results shows that the lateral acceleration which results in the surface current is related
to the Reynolds-stress anisotropy near the surface. The results indicate that there
should be roughly a three-fold increase in the lateral growth rate of the jet near the
free surface and a similar increase in the outward velocity, when compared to a deep
jet. Comparison to available experimental data showed that the maximum outward
velocity was consistent with the theory, and that the lateral scale of the surface-current
layer was roughly double that of the deep jet, slightly smaller than expected. The
near-surface stress anisotropy was shown to be related to the interaction of vorticity
with the free surface. This indicates that the results of this study are consistent with
earlier explanations of the surface current in terms of vortex/free-surface interaction.

1. Introduction
When a turbulent shear flow such as a jet or a wake evolves near a free surface, a

vertically thin region of large transverse (outward) velocity develops adjacent to the
surface. This feature, dubbed the ‘surface current’ by Anthony & Willmarth (1992),
has been observed in model-ship wakes (Walker & Johnston 1991), free-surface jets
(Anthony & Willmarth 1992; Walker, Chen & Willmarth 1995), and wakes of surface-
piercing flat plates (Logory, Hirsa & Anthony 1996). Similar behaviour has also been
observed in a temporally evolving round jet (Mangiavacchi, Gundlapalli & Akhavan
1994). Thus, the ‘surface current’ appears to be a ubiquitous feature of turbulent
free-surface flows.

The origin of this outward flow has never been fully established. Visualization stud-
ies have related it to the interaction of tangential vorticity with the free surface (Walker
et al. 1995; Mangiavacchi et al. 1994) as have studies based on near-surface vorticity
measurements (Logory et al. 1996). Walker et al. (1995) proposed that this vortex/free-
surface interaction could be related formally to the anisotropy of the turbulence near
the free surface. Both Davis & Winarto (1980) and Launder & Rodi (1983) observed
similar spreading near the wall in initially axisymmetric wall jets. Launder & Rodi
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(1983) conjectured that this phenomenon has its origin in the production of stream-
wise vorticity by Reynolds-stress gradients. The occurrence of similar results in both
wall jets and free-surface jets led Anthony & Willmarth (1992) to conclude that the
surface current must be caused by the common kinematic boundary condition on the
surface-normal velocity (i.e. the surface-normal velocity vanishes at the boundary)
not the differing conditions on the tangential velocities.

For this study, the case of an initially axisymmetric jet issuing below and parallel to a
free surface is chosen, althought the results are expected to be somewhat general. In §2,
below, it is shown, through an order-of magnitude analysis of the Reynolds-averaged
equations of motion, that the origin of the surface current can be traced to the
anisotropy of the turbulence caused by the kinematic free-surface boundary condition.
In addition, estimates of the magnitude of the outward velocity and the lateral growth
rate of the near-surface layer are developed. In §3, these results are shown to compare
favourably with available low-Froude-number jet data. The results are then related
to vortex/free-surface interactions in §4. The conclusions are summarized in §5.

2. The free-surface jet
For a turbulent jet issuing beneath a free surface, the jet initially evolves in a

manner similar to a jet in an unbounded medium – a ‘deep’ jet. Eventually the jet
begins to interact with the free surface. Once interaction with the free surface begins,
it will be assumed that except for a thin layer near the surface, the jet behaves as
a deep jet. (That this is a reasonable assumption is demonstrated below in §3.) In
what follows, the form of the Reynolds-averaged Navier–Stokes (RANS) equations
governing the evolution of a deep jet will first be developed, followed by those
governing the behaviour of the thin region near the free surface. The results will then
be combined to determine the origin of the surface current for this flow.

The RANS equations will be used in the following form, which applies for stationary
flow:

Uj

∂Ui

∂xj
= −∂P

∂xi
+ ν

∂2Ui

∂xj2
− ∂ujui

∂xj
, (2.1)

where the overbar indicates a mean quantity, uppercase letters represent instantaneous
values, and lowercase letters represent fluctuations relative to the mean. Here, P is
the mean pressure divided by the density, excluding hydrostatic effects – as a result,
there is no explicit body force term in the RANS equations. It will be assumed that
the Reynolds number is sufficiently high that viscous effects are negligible, therefore
the viscous terms will hereafter be dropped.

For the deep jet, it is assumed that the local characteristic streamwise (x-direction)
velocity scale for a jet is U◦ and that the length scale for variations in the streamwise
direction is x, the distance from the jet origin. The length scale for variations in
the radial direction for this axisymmetric flow `, defined as the jet half-width at half
the maximum velocity, is taken to be smaller than than x/10 (see e.g. Wygnanski &
Fiedler 1969 for experimental verification). The coordinate system and radial length
scale for the deep jet are shown in figure 1(a). From the Reynolds-averaged continuity
equation, one can deduce that the scale for the mean radial velocity is of order U◦`/x.
The turbulent velocity fluctuations will have a scale of u◦ which, based on experiment
(Wygnanski & Fiedler 1969), is known to be of a magnitude such that u2

◦ ∼ U2
◦/10.

These scales can be used to determine the dominant terms in the equations of
motion. The analysis for the deep jet is well established (see e.g. Tennekes & Lumley
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Figure 1. Schematic of streamwise velocity contours in a plane normal to the jet axis illustrating
length-scale definitions. (a) Streamwise velocity contours for a ‘deep’ jet showing the (r,θ) coordinate
system and the characteristic length scale `. (b) Streamwise velocity contours for a free-surface
jet (after Anthony & Willmarth 1992) showing the (x,y) coordinate system and the characteristic
horizontal length scale `s and vertical length scale δ for the surface-current layer.

1972) and so only the key results will be summarized. The Reynolds-averaged axial
(x) momentum equation for stationary flow is

Ux

∂Ux

∂x
+Ur

∂Ux

∂r
= −∂P

∂x
− ∂u2

x

∂x
− 1

r

∂

∂r
(ruxur) . (2.2)

Using the above scales to order the terms of the x-momentum equation and retaining
only the terms of highest order reduces (2.2) to

Ux

∂Ux

∂x
+Ur

∂Ux

∂r
= −1

r

∂

∂r
(ruxur) . (2.3)

The mean radial (r) momentum equation is

Ux

∂Ur

∂x
+Ur

∂Ur

∂r
= −∂P

∂r
− ∂uxur

∂x
− 1

r

∂(ru2
r )

∂r
+
u2
θ

r
. (2.4)

If, again, the terms are ordered as above, and only those of leading order retained,
the result is

∂P

∂r
= −1

r

∂

∂r

(
ru2

r

)
+
u2
θ

r

= −∂u
2
r

∂r
+
u2
θ − u2

r

r
. (2.5)

The u2
θ and u2

r Reynolds stresses are nearly equal across the entire jet (Wygnanski &
Feidler 1969) and so (2.5) can be further reduced to get

∂P

∂r
= −∂u

2
r

∂r
, (2.6)

which relates the change in pressure to the transverse gradients in the u2
r Reynolds

stress. The terms in this equation are comparable in order to the leading-order terms
in the x-momentum equation, (2.3) above. One can integrate (2.6) to yield

P + u2
r = const.

= 0 (2.7)
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which clearly shows that as one approaches the jet axis from far away (where P = 0),
the mean pressure drops in proportion to the increase in u2

r . As a result, the minimum
mean pressure will typically occur in the core of the jet where the turbulence level is
greatest.

When the jet interacts with the free surface, the free-surface boundary conditions
are imposed on the flow. It will be assumed that the Froude number is low, so
that the free surface will remain flat. Under these circumstances, the kinematic
condition reduces to W = 0 and the dynamic (zero-stress) condition reduces to
∂U/∂z = ∂V/∂z = 0, both applied at the free surface. The Reynolds stresses of

interest are required to satisfy the conditions w2 = vw = 0 and ∂v2/∂z = 0. When
these conditions are applied to the flow, a layer of thickness δ � x will develop near
the free surface. This layer will grow laterally at a higher rate than the subsurface
portion of the jet, and will have a lateral length scale `s which is larger than `, the
scale of the subsurface portion of the jet. A schematic of the resulting flow is shown
in figure 1(b).

The following analysis will examine the region far enough downstream of the jet
exit that h/x is small (where h is the depth of the jet axis beneath the free surface –
see figure 2b), and the maximum axial velocity U◦ occurs near the free surface. Here,
the velocity scales U◦ and u◦, used in the deep-jet analysis, are also appropriate for
the near-surface region. This behaviour occurs for x/h > 10, roughly (see Walker et
al. 1995). In this streamwise region, outside the near-surface layer, the jet will behave
as a deep jet; that this is true will be shown below. Using the length scales δ and `s
to non-dimensionalize the terms in the continuity equation indicates that the scale for
the horizontal mean velocity V is U◦`s/x, and the scale for the vertical mean velocity
W is U◦δ/x. Hence, in this region W � U. At this point the magnitude of `s is
undetermined; however, it is expected to be smaller than x.

The above scaling can be applied to the momentum equations to identify the
dominant terms in the near-surface region. The x-direction momentum equation is
given by

U
∂U

∂x
+ V

∂U

∂y
+ W

∂U

∂z
= −∂P

∂x
− ∂u2

∂x
− ∂uv

∂y
− ∂uw

∂z
. (2.8)
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◦
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◦
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◦
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◦
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)
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(
Ruw
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◦
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◦

x

δ

)
The leading-order terms in this equation are O(U2

◦/x); normalizing by this quantity
yields the order-of-magnitude estimates which appear in the second line of (2.8). Here
Ruv and Ruw are correlation coefficients for the indicated velocity fluctuations. The
first two terms on the left of (2.8) are O(1). If the free surface was a no-slip boundary,
the third term on the left would be O(1); however, since the free-surface boundary
condition requires ∂U/∂z = 0 (at the surface), we can expect that ∂U/∂z � U◦/δ and
so the third term in (2.8) will be negligible. It will be shown in the next paragraph
that the pressure P will be on the order of u2

◦, and so the pressure gradient term will
be O(u2

◦/U
2
◦ ). Ruv is by definition less than unity, but will, nonetheless, be O(1), and

therefore the second-to-last term will be O(1). Since ∂U/∂z is small it is expected that
Ruw ∼ O(10−1), at most. Retaining only terms of leading order yields

U
∂U

∂x
+ V

∂U

∂y
= −∂uv

∂y
− ∂uw

∂z
, (2.9)
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which is the appropriate form for the x-momentum equation in the thin near-surface
layer.

The z-momentum equation, in Reynolds-averaged form, is given by

U
∂W

∂x
+ V

∂W

∂y
+W

∂W

∂z
= −∂P

∂z
− ∂uw

∂x
− ∂vw

∂y
− ∂w2

∂z
, (2.10)

O

(
δ

x

)
O

(
δ

x

)
O

(
δ

x

)
O

(
P

U2
◦

x

δ

)
O

(
Ruw

u2
◦

U2
◦

)
O

(
Rvw

u2
◦

U2
◦

x

`s

)
O

(
u2
◦

U2
◦

x

δ

)
with the order-of-magnitude estimates again on the second line, again normalized
by U2

o/x. The leading-order term in (2.10) is clearly the last one, the vertical w2

Reynolds-stress gradient. Since there are no significant lateral gradients in W or
vertical gradients in V , v and w are uncorrelated and Rvw � 1 (see e.g. Anthony &
Willmarth 1992). Hence, all the other terms are of lower order than the w2 gradient,
with the exception of ∂P/∂z, which is of undetermined order. The conclusion is
that the vertical Reynolds-stress gradient, then, must be balanced by the vertical
mean-pressure gradient. This requires that P ∼ u2

◦, as stated above, and indicates that
the z-momentum equation, to leading order, reduces to

∂P

∂z
= −∂w

2

∂z
. (2.11)

At a given streamwise position, this can be integrated to yield

P (y, z) = P∞(y) + w2∞(y)− w2(y, z) (2.12)

for the pressure in the near-surface layer. Here the ∞ subscript represents a quantity
evaluated for z → −∞, relative to the thin near-surface layer; i.e. deeper than the near-
surface layer. The major conclusion to be obtained from the z-momentum equation
is that the mean pressure P in the near-surface region is completely determined by
the local w2 and the conditions at z → −∞, which, in this case, is the portion of the
jet which still behaves as a deep jet.

It is anticipated that there will be a larger-magnitude outward V in the near-surface
layer (and as a result of continuity, a larger lateral length scale `s) than exists in the
deep jet. The exact relationship of these near-surface scales to those in the deep jet
remains to be determined. The y-momentum equation is given by

U
∂V

∂x
+ V

∂V

∂y
+ W

∂V

∂z
= −∂P

∂y
− ∂uv

∂x
− ∂v2

∂y
− ∂vw

∂z
(2.13)

O

(
`s

x

)
O

(
`s

x

)
O

(
∂V/∂z

U◦/δ

)
O

(
u2
◦

U2
◦

x

`s

)
O

(
Ruv

u2
◦

U2
◦

)
O

(
u2
◦

U2
◦

x

`s

)
O

(
Rvw

u2
◦

U2
◦

x

δ

)
,

where the second line again contains the order-of-magnitude estimates normalized by
U2
◦/x. The last term on the left-hand side of (2.13) can be neglected via the same

reasoning which was applied to the corresponding term in the x-momentum equation,
(2.8). The term containing the vw Reynolds stress will also be negligible since v and
w are uncorrelated. Since Ruv < 1 and x/`s > 1, the uv term is of lower order than

the lateral pressure and v2 gradients, and can be neglected.
If, in addition to the foregoing, `s/x is assumed small, as it was for the deep jet,

(2.13) reduces to

∂P

∂y
= −∂v

2

∂y
, (2.14)
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which is the result for the deep jet (compare to equation (2.6)). Combining (2.13)
with (2.12) (along with equation (2.17) below for P∞) and assuming that v2

∞ ≈ w2
∞

which is true for the deep jet, yields the result v2 ≈ w2 for the near-surface layer.
This result is inconsistent with both the free-surface boundary conditions, and the
observed behaviour of the Reynolds stresses near the surface, in low-Froude-number
flows. This inconsistency indicates that `s cannot be so small that the advection terms
on the left-hand side of the y-momentum equation can be neglected.

If `s is not negligibly small, then for the remaining terms in (2.13) to balance
requires that `s/x ∼ u◦/U◦. The resulting form of the y-momentum equation is

U
∂V

∂x
+ V

∂V

∂y
= −∂P

∂y
− ∂v2

∂y
. (2.15)

In this equation, the imbalance between the lateral gradient of the pressure prescribed
by (2.12) and the lateral v2 gradient will result in an outward acceleration in the plane
of the free surface. It is this acceleration which results in the surface current.

It is useful to proceed one step further, combining the z- and y-momentum
equations. Using (2.12) to eliminate the local pressure from (2.15) yields

U
∂V

∂x
+ V

∂V

∂y
= − ∂

∂y

(
P∞ + w2

∞ − w2

)
− ∂v2

∂y
. (2.16)

Outside this near-surface layer, the flow behaves as a deep jet, hence (2.7) yields

P∞ = −u2
r∞ = −w

2∞ + v2∞

2
. (2.17)

(This results because the sum of the normal stresses is coordinate independent and,

in addition, u2
θ∞ ≈ u2

r∞; i.e. w2∞ + v2∞ = u2
r∞ + u2

θ∞ ≈ 2u2
r∞.) Upon substitution into

(2.16), (2.17) yields

U
∂V

∂x
+ V

∂V

∂y
=

∂

∂y

(
w2 − v2 − w2∞ − v2∞

2

)
. (2.18)

For w2∞ ≈ v2∞, this reduces to

U
∂V

∂x
+ V

∂V

∂y
=

∂

∂y

(
w2 − v2

)
, (2.19)

which indicates that the anisotropy that develops in the near-surface region, and
which causes w2 and v2 to differ substantially, results in the outward flow at the
surface. The discussion of (2.14) further indicates that the outward flow will only
be absent if the near-surface anisotropy is also absent. This is because, in this thin
layer, only the vertical gradients in the Reynolds stresses are balanced by pressure
changes, and so the lateral gradients in the Reynolds stresses can only be balanced
by an outward acceleration of the flow.

The reasoning that led to (2.15) can be used to develop an estimate for the order
of magnitude of the outward flow velocity, Vs. Continuity requires that Vs ∼ Uo`s/x,
as stated above. If `s/x ∼ u◦/U◦, required if both sides of (2.15) are of comparable
order, then Vs/U◦ ∼ u◦/U◦. Since u2

◦/U
2
◦ ∼ 10−1 it appears that Vs/U◦ ∼ 10−1/2,

which is roughly three times larger than the spreading velocity in the deep jet, where
V/U◦ ∼ 10−1. There is a corresponding three-fold increase in `s relative to `. It can
therefore be concluded that the presence of the free surface will result in a roughly



On the origin of the ‘surface current’ 281

(a)
1.2

0.8

0.4

0 0.1 0.2 0.3 0.4 0.5

U
Uo

(b)

0.1 0.2 0.3 0.4 0.5

y/x y/x

Figure 2. Profiles of mean streamwise velocity U/U◦ versus transverse coordinate y/x at (a) the
free surface (z = 2d), and (b) the centreplane (z = 0); 2, x/d = 8; 4, x/d = 16; ©, x/d = 32.

three-fold increase for both the outward velocity and the growth rate, as compared
to a deep jet. These increases will be confined to a thin layer near the surface.

3. Comparison to experiment
Using data for the jet flows of Walker et al. (1995), the behaviour of a free-surface

jet can be examined to see if the foregoing analysis is consistent with observed
behaviour. The data for one of the cases examined in Walker et al. (1995) will be
used – that for a jet issuing beneath and parallel to a free surface with a Froude
number (Fr) of 1.0 and a Reynolds number (Re) of 12 700, both based on jet-exit
velocity and exit diameter d. The depth of the jet axis below the free surface h is
twice the jet-exit diameter. In dimensional terms, the jet had an exit diameter of
0.0254 m and an exit velocity of 0.50 m s−1. The low Froude number for this jet is
consonant with the assumptions in the foregoing analysis. Turbulence statistics were
measured using a three-component laser velocimeter system; the experimental set-up
and instrumentation are described in detail in Walker et al. (1995).

Figure 2 shows the mean streamwise velocity (U) versus transverse position (y) for
three streamwise locations in the plane of the free surface, z = 2d (figure 2a), and in a
horizontal plane passing through the jet axis, z = 0 (figure 2b). The vertical symmetry
plane of the jet corresponds to y = 0, on the left edge of the figures. The three
streamwise locations are x/d = 8, 16, and 32, which are just before the interaction of
the jet with the free surface, just after interaction, and far enough downstream that
the surface current is well established, respectively. Here, the y-coordinate has been
normalized with the streamwise distance x, and the velocities have been normalized
by the local streamwise velocity on the jet axis (y = z = 0). From figure 2(b), it
can be concluded that well below the free surface, the jet remains self-similar since
the profiles all collapse. The mean streamwise velocity at the free surface increases
in magnitude with increasing x, until at x/d = 32 the maximum velocity at the free
surface is comparable to that below the surface. In this region (near x/d = 32), the
above analysis will be most applicable. At the free surface, we see that the lateral
scale of the jet increases with increasing x and, at x/d = 32, is nearly twice that of the
subsurface portion of the jet. This is consistent with the result above, indicating an
increased growth rate for the surface-current layer. The self-similar behaviour below
the surface is also consistent with the assumption that the jet evolves as a deep jet
except in the near-surface layer.
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Figure 3. Profiles of mean transverse velocity V/U◦ versus transverse coordinate y/x at (a) the
free surface (z = 2d), and (b) the centreplane (z = 0); 2, x/d = 8; 4, x/d = 16; ©, x/d = 32.

The lateral mean velocity (V ) is shown in figure 3, with figure 3(a) showing results
for z = 2d and figure 3(b) those for z = 0. These data are normalized in the same
way as those of figure 2. Although there is more scatter in these data than in the U
velocities (due to the lower magnitude of these velocities), the subsurface flow clearly
retains its self-similar character (figure 3b). At the free surface (z = 2d), the outward
velocity is initially zero at x/d = 8, but increases at x/d = 16 and rises to 20% of
the maximum axial velocity at x/d = 32. At this far downstream location, where
one would expect the above analysis to be most applicable, the maximum outward
velocity is roughly 3–4 times that in the deep jet, consistent with the above analysis,
and with the observed increase in the horizontal length scale near the surface.

The above analysis indicates that, at the free surface, V
2

will be of the same order
as (v2 − w2), provided that w2∞ = v2∞. Figure 4 shows profiles of (v2 − w2) for the
locations examined above. For y = 0 (figure 4b), (v2 − w2) is near zero, confirming
that v2

∞ ≈ w2
∞, while at the free surface (figure 4a) it is initially small, but increases

with streamwise distance. Also shown in figure 4(a), are lines indicating the maximum

value of V
2

using the data of figure 3(a). Initially, at x/d = 8, V
2

max is zero. As

the level of (v2 − w2) increases at x/d = 16, V
2

max increases slightly. At x/d = 32,

where the above analysis should apply, the maximum in (v2 − w2) is comparable to

the maximum V
2
, as predicted.

These results indicate that the analysis of §2 is consistent with observation for
the region near x/d = 32, where the mean and turbulent velocity scales for the
near-surface flow are the same as those for the subsurface flow. The data show that
the magnitude of the observed outward velocity relative to either the Reynolds-stress
difference, or the spreading velocity of the deep jet, or the maximum streamwise
velocity is as expected. The lateral scale of the near-surface flow also increases when
compared to the subsurface flow, roughly as expected.

4. Discussion
The above analysis, and the resulting conclusions, can be related to earlier con-

jectures regarding the origin of the surface current. Primary among these are the
observations of Anthony & Willmarth (1992), Walker et al. (1995) and Logory et
al. (1996) that the surface current is related to the interaction of tangential vorticity
with the free surface, and those of Launder & Rodi (1983) that the spreading near
the surface in wall jets may be related to the production of streamwise (x-direction)
vorticity owing to Reynolds-stress gradients. These will be addressed in turn.
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Figure 4. Profiles of Reynolds-stress difference (v2−w2)/U2
◦ versus transverse coordinate y/x at (a)

the free surface (z = 2d), and (b) the centreplane (z = 0); 2, x/d = 8; 4, x/d = 16; ©, x/d = 32.

Lines and solid symbols in (a) indicate the maximum level of V
2
/U2
◦ at the free surface for the

given x/d location.

The interaction of vorticity with a free surface can be identified with velocity–
vorticity correlations which appear as source terms in the RANS equations. Walker
et al. (1995) recast the Reynolds-stress terms from the Navier–Stokes equations in
rotational form:

∂uiuj

∂xj
=
∂k

∂xi
− εijkujωk, (4.1)

where k = uiui/2 and ωi is the fluctuating vorticity. The velocity–vorticity correlations
in (4.1) were discussed by Tennekes & Lumley (1972). They asserted that, in general,
these correlations were small since the vorticity and velocity fluctuations occur on
quite different spatial scales. Walker et al. (1995) argued that, near a free surface,
the correlation of orthogonal components of the tangential velocity and vorticity
would tend to be non-zero, owing to interaction of the local vorticity with its ‘image’
above the free surface. They showed that this was indeed true for the free-surface
jet at low Froude number. Walker, Leighton & Garza-Rios (1996), in a study of
initially homogeneous and isotropic turbulence near a free surface, showed that the
correlation coefficient for orthogonal components of velocity and vorticity in planes
parallel to the surface had a maximum of about 0.30–0.35 near the free surface, but
was essentially zero elsewhere.

The relationship of these terms to the surface current, or more precisely, to the
(v2 − w2) Reynolds-stress difference which produces the surface current can be made
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clear by first taking the curl of both sides of (4.1). This yields

εlmi
∂

∂xm

(
∂uiuj

∂xj

)
= εlmi

∂

∂xm

(
∂k

∂xi

)
− εlmi

∂

∂xm

(
εijkujωk

)
=

∂

∂xj

(
ujωl − ulωj

)
. (4.2)

The streamwise component of this equation is

∂2uw

∂y∂x
+
∂2vw

∂y2
+
∂2w2

∂y∂z
− ∂2uv

∂x∂z
− ∂2v2

∂y∂z
− ∂2vw

∂z2

=
∂

∂y

(
vωx − uωy

)
+

∂

∂z
(wωx − uωz) , (4.3)

which reduces to
∂2

∂y∂z

(
w2 − v2

)
=

∂

∂y

(
vωx − uωy

)
(4.4)

at leading order. (It is assumed here that only orthogonal components of the surface-
parallel velocity and vorticity are correlated, i.e. uωz ≈ 0, wωx ≈ 0.) Integrating (4.4)
from far below the surface to a point in the near-surface layer yields

∂

∂y

(
w2 − v2

)
=

∂

∂y

[(
ṽωx − ũωy

)
δ
]

(4.5)

for v2∞ ≈ w2∞. Here δ is the thickness of the near-surface layer and the velocity–
vorticity correlations are now average values over the range of integration. Equation
(4.5) indicates that the Reynolds-stress difference at the surface can equivalently be
represented by the velocity–vorticity correlations (albeit, the average over the near-
surface region in question, indicated here by the tilde). Since the vorticity and velocity
fluctuations are correlated as a result of the proximity of the free surface, the origin
of the surface current can equivalently be attributed to the interaction of the vorticity
with the free surface or the stress anisotropy caused by the free surface.

Since both the vorticity/free-surface interaction and the anisotropy of the Reynolds
stresses arise from the requirement that the surface-normal velocity vanish, the origin
of the surface current can be traced ultimately to this boundary condition. This
validates the conjecture of Anthony & Willmarth (1992) that this boundary condition
was responsible.

Launder & Rodi (1984) conjectured that the outward flow in wall jets was due
to the production of streamwise vorticity by Reynolds-stress gradients. (Actually
the production term in question is the left-hand side of equation (4.3), above.) The
production of streamwise vorticity, which requires both vertical and lateral gradients in
the Reynolds stresses, then presumably leads to outward flow. The foregoing indicates
that there is a more fundamental mechanism which causes the surface current – the
direct production of outward momentum by lateral Reynolds-stress gradients.

5. Conclusions
In this study, the evolution of an initially axisymmetric jet interacting with a free

surface was examined. The purpose was to determine the origin of the surface current
– the large outward velocity which exists in a thin layer adjacent to the surface. In §2,
the appropriate forms of the momentum equations for the near-surface region were
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developed. These equations are valid for the region far-enough downstream of the
jet exit that the maximum velocity occurs near the surface; x/h > 10, roughly. It was
shown that near the surface, outward acceleration results from the balance between
a positive contribution from the lateral gradients in the v2 Reynolds stress and a
negative contribution from the lateral pressure gradient. The local pressure field near
the free surface was shown to be largely determined by the level of w2. Combining
these results indicated that the lateral acceleration was equal to the lateral gradient in
the difference between v2 and w2, i.e. the stress anisotropy. Near the free surface, as a
result of the boundary conditions, w2 becomes small, while v2 can actually increase,
and the surface current results.

Comparison to available experimental data in §3 showed that the scaling assump-
tions used in the analysis were consistent with observed behaviour for x/d = 32. It
also showed that, in this region, the square of the maximum outward velocity was
comparable to the maximum in (v2 − w2), and 3–4 times the outward velocity for a
deep jet, as predicted by the theory. The lateral scale of the surface-current layer was
seen to be about double that of the deep jet; the theory predicted that this would be
roughly a factor of 101/2.

It was also shown in §4 that the near-surface stress anisotropy could be related to
the interaction of vorticity with the free surface via the velocity–vorticity correlations.
This indicates that the idea of the surface current being caused by the stress anisotropy
is consistent with earlier explanations in terms of vortex/free-surface interaction.
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